# Publications

Publications in the University Database

## Latest publications

- Analytical and Numerical Studies on the Second Order Asymptotic Expansion Method for European Option Pricing under Two-factor Stochastic Volatilities
The celebrated Black–Scholes model made the assumption of constant volatility but empirical studies on implied volatility and asset dynamics motivated the use of stochastic volatilities. Christoffersen in 2009 showed that multi-factor stochastic volatilities models capture the asset dynamics more realistically. Fouque in 2012 used it to price European options. In 2013 Chiarella and Ziveyi considered Christoffersen's ideas and introduced an asset dynamics where the two volatilities of the Heston type act separately and independently on the asset price, and using Fourier transform for the asset price process and double Laplace transform for the two volatilities processes, solved a pricing problem for American options. This paper considers the Chiarella and Ziveyi model and parameterizes it so that the volatilities revert to the long-run-mean with reversion rates that mimic fast(for example daily) and slow(for example seasonal) random effects. Applying asymptotic expansion method presented by Fouque in 2012, we make an extensive and detailed derivation of the approximation prices for European options. We also present numerical studies on the behavior and accuracy of our first and the second order asymptotic expansion formulas.

- Tensor Random Fields in Continuum Mechanics
- Calibration of Multiscale Two-Factor Stochastic Volatility Models: A Second-Order Asymptotic Expansion Approach
The development of financial markets imposes more complex models on the option pricing problems. On the previous papers by the authors, we consider a model under which the underlying asset is driven by two independent Heston-type stochastic volatility processes of multiscale (fast and slow) mean-reverting rates and we compute an approximate solution for the option pricing problem, using asymptotic expansion method. In the present paper, we aim to calibrate the model using the market prices of options on Euro Stoxx 50 index and an equity stock in the European market. Our approach is to use the market implied volatility surface for calibrating directly a set of new parameters required in our second-order asymptotic expansion pricing formula for European options. This secondorder asymptotic expansion formula provides a better approximation formula for European option prices than the first-order formula, as explained in an earlier work of the authors.

- Random fields related to the symmetry classes of second-order symmetric tensors
Under the change of basis in the three-dimensional space by means of an orthogonal matrix g, a matrix A of a linear operator is transformed as A → gAg-1 Mathematically, the stationary subgroup of a symmetric matrix under the above action can be either (Formula Presented), when all three eigenvalues of A are different, or (Formula Presented), when two of them are equal, or O(3), when all three eigenvalues are equal. Physically, one typical application relates to dependent quantities like a second-order symmetric stress (or strain) tensor. Another physical setting is that of dependent fields, such as conductivity with such three cases is the conductivity (or, similarly, permittivity, or anti-plane elasticity) second-rank tensor, which can be either orthotropic, transversely isotropic, or isotropic. For each of the above symmetry classes, we consider a homogeneous random field taking values in the fixed point set of the class that is invariant with respect to the natural representation of a certain closed subgroup of the orthogonal group. Such fields may model stochastic heat conduction, electric permittivity, etc. We find the spectral expansions of the introduced random fields.

- Dmitrii S. Silvestrov
This chapter presents short biographical notes about Professor Dmitri S. Silvestrov.

- Tensor-Valued Random Fields for Continuum Physics
- Preface
- Stochastic Processes and Applications : SPAS2017, Västerås and Stockholm, Sweden, October 4-6, 2017
- Spectral expansions of random sections of homogeneous vector bundles
Tiny fluctuations of the Cosmic Microwave Background as well as various observable quantities obtained by spin raising and spin lowering of the effective gravitational lensing potential of distant galaxies and galaxy clusters are described mathematically as isotropic random sections of homogeneous spin and tensor bundles. We consider the three existing approaches to rigourous construction of the above objects, emphasising an approach based on the theory of induced group representations. Both orthogonal and unitary representations are treated in a unified manner. Several examples from astrophysics are included.

- Advanced Monte Carlo pricing of European options in a market model with two stochastic volatilities
We consider a market model with four correlated factors and two stochastic volatilities, one of which is rapid-changing, while another one is slow-changing in time. An advanced Monte Carlo methods based on the theory of cubature in Wiener space, is used to find the no-arbitrage price of the European call option in the above model.

- Approximation Methods of European Option Pricing in Multiscale Stochastic Volatility Model
In the classical Black-Scholes model for financial option pricing, the asset price follows a geometric Brownian motion with constant volatility. Empirical findings such as volatility smile/skew, fat-tailed asset return distributions have suggested that the constant volatility assumption might not be realistic. A general stochastic volatility model, e.g. Heston model, GARCH model and SABR volatility model , in which the variance/volatility itself follows typically a mean-reverting stochastic process, has shown to be superior in terms of capturing the empirical facts. However in order to capture more features of the volatility smile a two-factor, of double Heston type, stochastic volatility model is more useful as shown by Christoffersen, Heston and Jacobs. We consider one specific type of such two-factor volatility models in which the volatility has multiscale mean-reversion rates. Our model contains two mean-reverting volatility processes with a fast and a slow reverting rate respectively. We consider the European option pricing problem under one type of the multiscale stochastic volatility model where the two volatility processes act as independent factors in the asset price process. The novelty in this chapter is an approximating analytical solution using asymptotic expansion method which extends the authors earlier research in Canhanga et al. In addition we propose a numerical approximating solution using Monte-Carlo simulation. For completeness and for comparison we also implement the semi-analytical solution by Chiarella and Ziveyi using method of characteristics, Fourier and bivariate Laplace transforms.

- Numerical Methods on European Options Second Order Asymptotic Expansions for Multiscale Stochastic Volatility
After Black-Scholes proposed a model for pricing European Option in 1973, Cox, Ross and Rubinstein in 1979, and Heston in 1993, showed that the constant volatility assumption in the Black-Scholes model was one of the main reasons for the model to be unable to capture some market details. Instead of constant volatilities, they introduced non-constant volatilities to the asset dynamic modeling. In 2009, Christoffersen empirically showed "why multi-factor stochastic volatility models work so well". Four years later, Chiarella and Ziveyi solved the model proposed by Christoffersen. They considered an underlying asset whose price is governed by two factor stochastic volatilities of mean reversion type. Applying Fourier transforms, Laplace transforms and the method of characteristics they presented an approximate formula for pricing American option.The huge calculation involved in the Chiarella and Ziveyi approach motivated us to investigate another approach to compute European option prices on a Christoffersen type model. Using the first and second order asymptotic expansion method we presented a closed form solution for European option, and provided experimental and numerical studies on investigating the accuracy of the approximation formulae given by the first order asymptotic expansion. In the present chapter we will perform experimental and numerical studies for the second order asymptotic expansion and compare the obtained results with results presented by Chiarella and Ziveyi.

- A Random Field Formulation of Hooke’s Law in All Elasticity Classes
For each of the 8 symmetry classes of elastic materials, we consider a homogeneousrandom field taking values in the fixed point set V of the corresponding class, that is isotropic with respect to the natural orthogonal representation of a group lying between the isotropy group of the class and its normaliser. We find the general form of the correlation tensors of orders 1 and 2 of such a field, and the field’s spectral expansion.

- Algorithms of the Copula Fit to the Nonlinear Processes in the Utility Industry
Our research studies the construction and estimation of copula-based semi parametric Markov model for the processes, which involved in water flows in the hydro plants. As a rule analyzing the dependence structure of stationary time series regressive models defined by invariant marginal distributions and copula functions that capture the temporal dependence of the processes is considered. This permits to separate out the temporal dependence (such as tail dependence) from the marginal behavior (such as fat tails) of a time series. Dealing with utility company data we have found the best copula describing data - Gumbel copula. As a result constructed algorithm was used for an imitation of low probability events (in a hydro power industry) and predictions.

- Spectral expansions of tensor-valued random fields
In this paper, we review the theory of random fields that are defined on the space domain ℝ3, take values in a real finite-dimensional linear space V that consists of tensors of a fixed rank, and are homogeneous and isotropic with respect to an orthogonal representation of a closed subgroup G of the group O(3). A historical introduction, the statement of the problem, some current results, and a sketch of proofs are included.

- Numerical Studies on Asymptotics of European Option Under Multiscale Stochastic Volatility
Multiscale stochastic volatilities models relax the constant volatility assumption from Black-Scholes option pricing model. Such models can capture the smile and skew of volatilities and therefore describe more accurately the movements of the trading prices. Christoffersen et al. Manag Sci 55(2):1914–1932 (2009) presented a model where the underlying price is governed by two volatility components, one changing fast and another changing slowly. Chiarella and Ziveyi Appl Math Comput 224:283–310 (2013) transformed Christoffersen’s model and computed an approximate formula for pricing American options. They used Duhamel’s principle to derive an integral form solution of the boundary value problem associated to the option price. Using method of characteristics, Fourier and Laplace transforms, they obtained with good accuracy the American option prices. In a previous research of the authors (Canhanga et al. 2014), a particular case of Chiarella and Ziveyi Appl Math Comput 224:283–310 (2013) model is used for pricing of European options. The novelty of this earlier work is to present an asymptotic expansion for the option price. The present paper provides experimental and numerical studies on investigating the accuracy of the approximation formulae given by this asymptotic expansion. We present also a procedure for calibrating the parameters produced by our first-order asymptotic approximation formulae. Our approximated option prices will be compared to the approximation obtained by Chiarella and Ziveyi Appl Math Comput 224:283–310 (2013).

- Fractal planetary rings: energy inequalities and random field model
This study is motivated by a recent observation, based on photographs from the Cassini mission, that Saturn’s rings have a fractal structure in radial direction. Accordingly, two questions are considered: (1) What Newtonian mechanics argument in support of such a fractal structure of planetary rings is possible? (2) What kinematics model of such fractal rings can be formulated? Both challenges are based on taking planetary rings’ spatial structure as being statistically stationary in time and statistically isotropic in space, but statistically nonstationary in space. An answer to the first challenge is given through an energy analysis of circular rings having a self-generated, noninteger-dimensional mass distribution [V. E. Tarasov,

*Int. J. Mod Phys. B***19**, 4103 (2005)]. The second issue is approached by taking the random field of angular velocity vector of a rotating particle of the ring as a random section of a special vector bundle. Using the theory of group representations, we prove that such a field is completely determined by a sequence of continuous positive-definite matrix-valued functions defined on the Cartesian square F^2 of the radial cross-section F, where F is a fat fractal. - Matérn Class Tensor-Valued Random Fields and Beyond
We construct classes of homogeneous random fields on a three-dimensional Euclidean space that take values in linear spaces of tensors of a fixed rank and are isotropic with respect to a fixed orthogonal representation of the group of 3 × 3 orthogonal matrices.The constructed classes depend on finitely many isotropic spectral densities. We say that such a field belongs to either the Matérn or the dual Matérn class if all of the above densities are Matérn or dual Matérn. Several examples are considered.

- Spectral expansions of random sections of homogeneous vector bundles
Tiny fluctuations of the Cosmic Microwave Background as well as various observable quantities obtained by spin raising and spin lowering of the effective gravitational lensing potential of distant galaxies and galaxy clusters, are described mathematically as isotropic random sections of homogeneousspin and tensor bundles. We consider the three existing approaches to rigourous constructing of the above objects, emphasising an approach based on the theory of induced group representations. Both orthogonal and unitary representations are treated in a unified manner. Several examples from astrophysics are included.

- Spectral expansions of homogeneous and isotropic tensor-valued random fields
We establish spectral expansions of tensor-valued homogeneous and isotropic random fields in terms of stochastic integrals with respect to orthogonal scattered random measures previously known only for the case of tensor rank 0. The fields under consideration take values in the 3-dimensional Euclidean space E3 and in the space S2(E3) of symmetric rank 2 tensors over E3. We find a link between the theory of random fields and the theory of finite-dimensional convex compact sets. These random fields furnish stepping-stone for models of rank 1 and rank 2 tensor-valued fields in continuum physics, such as displacement, velocity, stress, strain, providing appropriate conditions (such as the governing equation or positive-definiteness) are imposed.