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Abstract
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The definition of a group

Definition 1. A binary structure (G,∗) is called a group, if the following axioms are satisfied.

G1 : The binary operation ∗ is associative, i.e., for all a, b, c ∈ G, we have

(a∗b)∗ c = a∗ (b∗ c).

G2 : There exist an identity element e ∈ G such that for all a ∈ G,

e∗a = a∗ e = a.

G3 : For each a ∈ G, there exist an inverse element a′ ∈ G such that

a ·a′ = a′ ·a = e.

Examples of groups

Example 1. (Z,+), (Q,+), (R,+), and (C,+) are groups with e = 0 and a′ =−a.

Example 2. (U, ·) is a group with e = 1 and a′ = a−1. Because (U, ·) and (R2π ,+2π) are iso-
morphic binary structures, (R2π ,+2π) is also a group with e = 0 and a′ = 2π−a.
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Example 3. (Un, ·) is a group with e= 1 and a′= a−1. Because (Un, ·) and (Zn,+n) are isomorphic
binary structures, (Zn,+n) is also a group with e = 0 and a′ = n−a.

Example 4. Let Mm×n(Z) be the set of all m× n matrix with integer elements. (Mm×n(Z),+) is
a group. The obviously defined sets Mm×n(Zn), Mm×n(Q), Mm×n(R), and Mm×n(C) are groups
under matrix addition.

Examples of binary structures that are not groups

Example 5. (Z+,+) is not a group, because there is no identity element. This is the reason for
introducing 0.

Example 6. (Z+∪{0},+) is not a group, because the element 1 has no inverse. This is the reason
to introduce negative integers. (Z,+) is a group.

Example 7. (Z \ {0}, ·) is not a group, because the element 2 has no inverse. This is the reason
to introduce rational numbers. Check that (Q\{0}, ·) is a group.

Abelian groups

Definition 2. A group (G,∗) is abelian if ∗ is commutative.

Until now, we met only abelian groups.

Example 8. Let GL(n,R) be a subset of Mn×n(R) consisting of invertible matrices. GL(n,R)
together with matrix multiplication is a non-abelian group. The obviously defined sets GL(n,Q) and
GL(n,C) are non-abelian groups under matrix multiplication.

Elementary theorems about groups

Theorem 1. If x ∗ a = x ∗ b, then a = b (left cancellation law). If a ∗ x = b ∗ x, then a = b (right
cancellation law).
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Proof of the left cancellation law.

x∗a = x∗b Theorem’s condition

x′ ∗ (x∗a) = x′ ∗ (x∗b) Left multiplication by x′

(x′ ∗ x)∗a = (x′ ∗ x)∗b G1,associativity

e∗a = e∗b G3, inverse

a = b G2, identity.

Theorem 2. Let (G,∗) be a group and let a, b ∈ G. The linear equations a ∗ x = b and y ∗ a = b
have unique solutions x and y in G.
Theorem 3. Let (G,∗) be a group. There exist only one identity element e. For any a ∈ G, there
exist only one inverse a′.

Left definition of a group

Definition 3. A binary structure (G,∗) is called a group, if the following axioms are satisfied.

G1 : The binary operation ∗ is associative.

G l
2 : There exist a left identity element e ∈ G such that for all a ∈ G,

e∗a = a.

G l
3 : For each a ∈ G, there exist a left inverse element a′ ∈ G such that

a′ ·a = e.

Theorem 4. The system of two-sided axioms (G1,G2,G3) and the system of left axioms
(G1,G

l
2 ,G

l
3) determine the same binary algebraic structures (called groups). Likewise, the obvi-

ously defined system (G1,G
r
2 ,G

r
3 ) of right axioms determine the same binary algebraic structures.
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Finite groups and group tables

Let (G,∗) be a group and let G be a finite set. The structure of the group G can be completely
described by the group table. For example,

· 1 −1

1 1 −1
−1 −1 1

is the group table of the group (U2, ·). The table

+2 0 1

0 0 1
1 1 0

is the group table of the group (Z2,+2). It is very easy to see that the groups are indeed isomorphic.

Notation

Along with notation from Lecture 2, algebraists use another notation:

Notation of Lecture 2 Additive notation Multiplicative notation
a∗b a+b ab

e 0 1
a′ −a a−1

a∗a∗ · · · ∗a (n times) na an

Additive notation is used only for abelian groups.

Definition 4. The order |G| of a group G is the cardinality of the set G.

Subgroups

A subgroup H of a group G is a group contained in G so that if h, h′ ∈ H, then the product
hh′ in H is the same as the product hh′ in G. The formal definition of subgroup, however, is more
convenient to use.

Definition 5. A subset H of a group G is a subgroup if

À 1 ∈ H;

– Typeset by FoilTEX – 3



MMA501 2015, period 2

Á If a, b ∈ H, then ab ∈ H;

Â if a ∈ H, then a−1 ∈ H.

If H is a subgroup of G, we write H ≤G; if H is a proper subgroup of G, that is, H 6= G, then
we write H < G. G is the improper subgroup of G. The subgroup {1} is the trivial subgroup of
G. All other subgroups are nontrivial.

Examples of subgroups

Example 9. We have (Z,+)< (Q,+)< (R,+)< (C,+).

Example 10. Let C∗ = C\{0}. Then, for any n ∈ Z+, we have (Un, ·)< (U, ·)< (C∗, ·).
Example 11. The set of cardinality 4 may carry exactly two different group structures. The first is
(Z4,+),

+4 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

while the second is the Klein 4-group V (V abbreviates the original German term Vierergruppe):
e a b c

e e a b c
a a e c b
b b c e a
c c b a e

Z4 has only one nontrivial proper subgroup {0,2}, while V has three nontrivial proper sub-
groups, {e,a}, {e,b}, and {e,c}. This is shown at the following subgroup diagrams.

Z4

{0,2}

{0}

V

{e,a} {e,b} {e,c}

{e}
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Cyclic subgroups

Definition 6. If G is a group and a ∈ G, write

〈a〉= {an : n ∈ Z}.

〈a〉 is called the cyclic subgroup of G generated by a. A group G is called cyclic if there exists
a ∈ G with G = 〈a〉, in which case a is called a generator for G.

Example 12. For any n ∈ Z+, Un is a cyclic group with ζ = e2πi/n as a generator, i.e., Un = 〈ζ 〉.
Because Zn is isomorphic to Un, Zn is also a cyclic group with 1 as a generator, i.e., Zn = 〈1〉.
Check that Z4 = 〈3〉.

Example 13. V is not cyclic, because 〈a〉, 〈b〉, and 〈c〉 are proper subgroups.

Example 14. (Z,+) = 〈1〉. For any n ∈ Z, the cyclic subgroup generated by n, 〈n〉, consists of all
multiples of n, and is denoted by nZ. We have nZ=−nZ.

Properties of cyclic groups

Definition 7. Let G be a group, and let a ∈ G. If 〈a〉 is finite, then the order of a is the order |〈a〉|
of this cyclic subgroup. Otherwise, we say that a is of infinite order.

Theorem 5. Every cyclic group is abelian.

Theorem 6 (Division algorithm for Z). Let m ∈ Z+ and n ∈ Z. Then there exist unique q ∈ Z (the
quotient) and r ∈ Z (the remainder) such that

n = mq+ r and 0≤ r < m.

Proof. Consider all nonnegative integers of the form n− am, where a ∈ Z. Define r to be the
smallest nonnegative integer of the form n− am, and define q to be the integer a occurring in the
expression r = n−am.

If mq+ r = mq′+ r′, where 0 ≤ r′ < m, then |(q− q′)m| = |r′− r|. Now 0 ≤ |r− r′| < m
and, if |q− q′| 6= 0, then |(q− q′)m| ≥ m. We conclude that both sides are 0, that is, q′ = q and
r′ = r.

Theorem 7. A subgroup of a cyclic group is cyclic.
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Corollary 1. The subgroups of (Z,+) are (nZ,+) for n ∈ Z.

Let r ∈ Z+ and s ∈ Z+. Let H = 〈r,s〉 denotes the smallest subgroup in (Z,+) containing
both r and s. H is a subgroup of (Z,+). One can prove that H = {nr +ms : n,m ∈ Z+ }. By
Corollary 1, H has a generator d ∈ Z\{0}, that can be chosen to be positive.

Definition 8. The positive generator d of the cyclic group H = {nr+ms : n,m ∈ Z+ } is called the
greatest common divisor of r and s.

Definition 9. Two positive integers r and s are relatively prime if their greatest common divisor is
1.

Theorem 8 (The structure of cyclic groups). Every infinite cyclic group is isomorphic to the group
(Z,+) and every finite cyclic group of order m is isomorphic to the group (Zm,+m).

Theorem 9. Let G = 〈a〉 and |G| = n. Let b = as ∈ G. Let d be the greatest common divisor of n
and s, and let H = 〈b〉. Then |H|= n/d. In particular, b generates all of G if and only if r is relatively
prime with n.

Example 15. The following subgroup diagram is obtained from Theorem 9 by direct calculations.

〈1〉= Z18

〈2〉= Z9 〈3〉= Z6

〈6〉= Z3 〈9〉= Z2

〈0〉= Z1

Generating sets

Let (G, ·) be a group, and let S be a subset of G.
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Theorem 10. Let 〈S〉 be the set of elements of G consisting of all products x1 . . .xn such that xi or
x−1

i is an element of S for each i, and also containing the unit element. It is the smallest subgroup
of G containing S.

Definition 10. The elements of S are called the generators of 〈S〉. If 〈S〉 = G, we say that S
generates G. If there exists a finite set S that generates G, then G is finitely generated.

Example 16. (Z,+)= 〈1〉 is a finitely generated group. Its subgroup 〈r,s〉 is also generated by one
element d, which is the greatest common divisor of r and s.

Directed graphs: definition

Definition 11. A directed graph (or just digraph) is a finite set of points called vertices and some
arcs (with a direction denoted by an arrowhead or without a direction) joining vertices.

For each generating set S of a finite group G, we can construct the following Cayley digraph
D . The number of vertices in D is |G|. For any a ∈ S, there exist arcs of type a. An arc of type
a points from x ∈ G to y ∈ G if and only if y = xa. If a ∈ S and a2 = e, it is customary to omit the
arrowhead from the arc of type a.

Example: Cayley digraph for G = Z6 and S = {1}

Example 17. Let G = Z6 and S = {1}. The Cayley digraph has the form

0

��

5

@@

1

��

4

OO

2

��

3

^^
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Example: Cayley digraph for G = Z6 and S = {2,3}

Example 18. Let G = Z6 and S = {2,3}. Let // be an arrow of type 2. Because 32 = 0

in Z6, the arrow of type 3 must be . The Cayley digraph has the form

0

��

3

��

1

@@

5oo

4

EE

2oo

A characterisation of Cayley digraphs

Theorem 11. A digraph G is a Cayley digraph of some generating set H of a finite group G if and
only if the following four properties are satisfied.

À G is connected.

Á At most one arc goes from vertex g to a vertex h.

Â Each vertex g has exactly one arc of each type starting at g, and one of each type ending at g.

Ã If two different sequences of arc types starting from vertex g lead to the same vertex h, then
those same sequences of arc types starting from any vertex u will lead to the same vertex v.

Cayley used this theorem to construct new groups. For example, the following digraph satis-
fies all conditions of Theorem 11.
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· // ·

��

·

��

·oo

· // ·

OO

·

OO

·oo

If we label // by a and by b, we obtain a Cayley digraph of a new

group of order 8:

e // a

��

b

��

aboo

a3b // a2b

OO

a3

OO

a2oo
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