Groups

Abdennour Kitouni, Anatoliy Malyarenko, Sergei Silvestrov

November 17, 2015

Abstract

Contents of the lecture.

- Definition of a group
- Subgroups.
- Cyclic groups.
- Generating sets and Cayley digraphs.

The definition of a group

Definition 1. A binary structure (G,*) is called a **group**, if the following axioms are satisfied.

 \mathcal{G}_1 : The binary operation * is associative, i.e., for all $a, b, c \in G$, we have

$$(a*b)*c = a*(b*c).$$

 \mathscr{G}_2 : There exist an **identity element** $e \in G$ such that for all $a \in G$,

$$e * a = a * e = a$$
.

 \mathscr{G}_3 : For each $a \in G$, there exist an **inverse** element $a' \in G$ such that

$$a \cdot a' = a' \cdot a = e$$
.

Examples of groups

Example 1. $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$, and $(\mathbb{C},+)$ are groups with e=0 and a'=-a.

Example 2. (U,\cdot) is a group with e=1 and $a'=a^{-1}$. Because (U,\cdot) and $(\mathbb{R}_{2\pi},+_{2\pi})$ are isomorphic binary structures, $(\mathbb{R}_{2\pi},+_{2\pi})$ is also a group with e=0 and $a'=2\pi-a$.

Example 3. (U_n, \cdot) is a group with e = 1 and $a' = a^{-1}$. Because (U_n, \cdot) and $(\mathbb{Z}_n, +_n)$ are isomorphic binary structures, $(\mathbb{Z}_n, +_n)$ is also a group with e = 0 and a' = n - a.

Example 4. Let $M_{m\times n}(\mathbb{Z})$ be the set of all $m\times n$ matrix with integer elements. $(M_{m\times n}(\mathbb{Z}),+)$ is a group. The obviously defined sets $M_{m\times n}(\mathbb{Z}_n)$, $M_{m\times n}(\mathbb{Q})$, $M_{m\times n}(\mathbb{R})$, and $M_{m\times n}(\mathbb{C})$ are groups under matrix addition.

Examples of binary structures that are not groups

Example 5. $(\mathbb{Z}^+,+)$ is not a group, because there is no identity element. This is the reason for introducing 0.

Example 6. $(\mathbb{Z}^+ \cup \{0\}, +)$ is not a group, because the element 1 has no inverse. This is the reason to introduce negative integers. $(\mathbb{Z}, +)$ *is* a group.

Example 7. $(\mathbb{Z}\setminus\{0\},\cdot)$ is not a group, because the element 2 has no inverse. This is the reason to introduce rational numbers. Check that $(\mathbb{Q}\setminus\{0\},\cdot)$ *is* a group.

Abelian groups

Definition 2. A group (G,*) is **abelian** if * is commutative.

Until now, we met only abelian groups.

Example 8. Let $GL(n,\mathbb{R})$ be a subset of $M_{n\times n}(\mathbb{R})$ consisting of invertible matrices. $GL(n,\mathbb{R})$ together with matrix multiplication is a non-abelian group. The obviously defined sets $GL(n,\mathbb{Q})$ and $GL(n,\mathbb{C})$ are non-abelian groups under matrix multiplication.

Elementary theorems about groups

Theorem 1. If x * a = x * b, then a = b (left cancellation law). If a * x = b * x, then a = b (right cancellation law).

Proof of the left cancellation law.

$$x*a = x*b$$
 Theorem's condition $x'*(x*a) = x'*(x*b)$ Left multiplication by x' $(x'*x)*a = (x'*x)*b$ \mathcal{G}_1 , associativity $e*a = e*b$ \mathcal{G}_3 , inverse $a = b$ \mathcal{G}_2 , identity.

Theorem 2. Let (G,*) be a group and let $a, b \in G$. The linear equations a*x = b and y*a = b have unique solutions x and y in G.

Theorem 3. Let (G,*) be a group. There exist only one identity element e. For any $a \in G$, there exist only one inverse a'.

Left definition of a group

Definition 3. A binary structure (G,*) is called a **group**, if the following axioms are satisfied.

 \mathcal{G}_1 : The binary operation * is associative.

 \mathscr{G}_2^l : There exist a **left identity element** $e \in G$ such that for all $a \in G$,

$$e*a=a$$
.

 \mathscr{G}_3^l : For each $a \in G$, there exist a **left inverse** element $a' \in G$ such that

$$a' \cdot a = e$$
.

Theorem 4. The system of two-sided axioms $(\mathcal{G}_1,\mathcal{G}_2,\mathcal{G}_3)$ and the system of left axioms $(\mathcal{G}_1,\mathcal{G}_2^l,\mathcal{G}_3^l)$ determine the same binary algebraic structures (called groups). Likewise, the obviously defined system $(\mathcal{G}_1,\mathcal{G}_2^r,\mathcal{G}_3^r)$ of right axioms determine the same binary algebraic structures.

- Typeset by FoilT_EX -

2

Finite groups and group tables

Let (G,*) be a group and let G be a *finite* set. The structure of the group G can be completely described by the *group table*. For example,

	1	-1
1	1	-1
-1	-1	1

is the group table of the group (U_2,\cdot) . The table

$+_{2}$	0	1
0	0	1
1	1	0

is the group table of the group $(\mathbb{Z}_2, +_2)$. It is very easy to see that the groups are indeed isomorphic.

Notation

Along with notation from Lecture 2, algebraists use another notation:

The motation from Education E, digostration and another motation				
Notation of Lecture 2	Additive notation	Multiplicative notation		
a*b	a+b	ab		
e	0	1		
a'	-a	a^{-1}		
$a*a*\cdots*a$ (n times)	na	a^n		

Additive notation is used only for abelian groups.

Definition 4. The **order** |G| of a group G is the cardinality of the set G.

Subgroups

A subgroup H of a group G is a group contained in G so that if $h, h' \in H$, then the product hh' in H is the same as the product hh' in G. The formal definition of subgroup, however, is more convenient to use.

Definition 5. A subset H of a group G is a **subgroup** if

① $1 \in H$;

- ② If $a, b \in H$, then $ab \in H$;
- 3 if $a \in H$, then $a^{-1} \in H$.

If H is a subgroup of G, we write $H \leq G$; if H is a **proper** subgroup of G, that is, $H \neq G$, then we write H < G. G is the **improper** subgroup of G. The subgroup $\{1\}$ is the **trivial subgroup** of G. All other subgroups are **nontrivial**.

Examples of subgroups

Example 9. We have $(\mathbb{Z},+)<(\mathbb{Q},+)<(\mathbb{R},+)<(\mathbb{C},+)$.

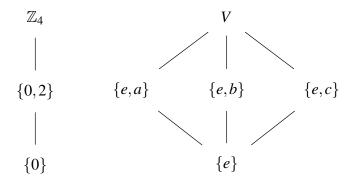
Example 10. Let $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$. Then, for any $n \in \mathbb{Z}^+$, we have $(U_n, \cdot) < (U, \cdot) < (\mathbb{C}^*, \cdot)$. **Example 11.** The set of cardinality 4 may carry exactly two different group structures. The first is $(\mathbb{Z}_4, +)$,

+4	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

while the second is the **Klein 4-group** V (V abbreviates the original German term Vierergruppe):

	e	a	b	С
e	e	а	b	С
а	a	e	c	b
b	b	c	e	а
С	С	b	а	e

 \mathbb{Z}_4 has only one nontrivial proper subgroup $\{0,2\}$, while V has three nontrivial proper subgroups, $\{e,a\}$, $\{e,b\}$, and $\{e,c\}$. This is shown at the following *subgroup diagrams*.



Cyclic subgroups

Definition 6. If G is a group and $a \in G$, write

$$\langle a \rangle = \{ a^n \colon n \in \mathbb{Z} \}.$$

 $\langle a \rangle$ is called the **cyclic subgroup** of G generated by a. A group G is called **cyclic** if there exists $a \in G$ with $G = \langle a \rangle$, in which case a is called a **generator** for G.

Example 12. For any $n \in \mathbb{Z}^+$, U_n is a cyclic group with $\zeta = e^{2\pi i/n}$ as a generator, i.e., $U_n = \langle \zeta \rangle$. Because \mathbb{Z}_n is isomorphic to U_n , \mathbb{Z}_n is also a cyclic group with 1 as a generator, i.e., $\mathbb{Z}_n = \langle 1 \rangle$. Check that $\mathbb{Z}_4 = \langle 3 \rangle$.

Example 13. *V* is *not* cyclic, because $\langle a \rangle$, $\langle b \rangle$, and $\langle c \rangle$ are proper subgroups.

Example 14. $(\mathbb{Z},+)=\langle 1 \rangle$. For any $n \in \mathbb{Z}$, the cyclic subgroup generated by $n, \langle n \rangle$, consists of all multiples of n, and is denoted by $n\mathbb{Z}$. We have $n\mathbb{Z}=-n\mathbb{Z}$.

Properties of cyclic groups

Definition 7. Let G be a group, and let $a \in G$. If $\langle a \rangle$ is finite, then the **order** of a is the order $|\langle a \rangle|$ of this cyclic subgroup. Otherwise, we say that a is of **infinite order**.

Theorem 5. Every cyclic group is abelian.

Theorem 6 (Division algorithm for \mathbb{Z}). Let $m \in \mathbb{Z}^+$ and $n \in \mathbb{Z}$. Then there exist unique $q \in \mathbb{Z}$ (the **quotient**) and $r \in \mathbb{Z}$ (the **remainder**) such that

$$n = mq + r$$
 and $0 \le r < m$.

Proof. Consider all nonnegative integers of the form n-am, where $a\in\mathbb{Z}$. Define r to be the smallest nonnegative integer of the form n-am, and define q to be the integer a occurring in the expression r=n-am.

If mq+r=mq'+r', where $0 \le r' < m$, then |(q-q')m|=|r'-r|. Now $0 \le |r-r'| < m$ and, if $|q-q'| \ne 0$, then $|(q-q')m| \ge m$. We conclude that both sides are 0, that is, q'=q and r'=r.

Theorem 7. A subgroup of a cyclic group is cyclic.

Corollary 1. The subgroups of $(\mathbb{Z},+)$ are $(n\mathbb{Z},+)$ for $n\in\mathbb{Z}$.

Let $r \in \mathbb{Z}^+$ and $s \in \mathbb{Z}^+$. Let $H = \langle r, s \rangle$ denotes the smallest subgroup in $(\mathbb{Z}, +)$ containing both r and s. H is a subgroup of $(\mathbb{Z}, +)$. One can prove that $H = \{nr + ms \colon n, m \in \mathbb{Z}^+\}$. By Corollary 1, H has a generator $d \in \mathbb{Z} \setminus \{0\}$, that can be chosen to be positive.

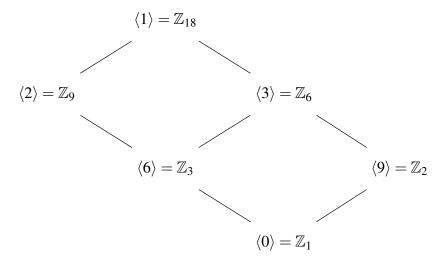
Definition 8. The positive generator d of the cyclic group $H = \{nr + ms : n, m \in \mathbb{Z}^+\}$ is called the greatest common divisor of r and s.

Definition 9. Two positive integers r and s are **relatively prime** if their greatest common divisor is 1.

Theorem 8 (The structure of cyclic groups). Every infinite cyclic group is isomorphic to the group $(\mathbb{Z},+)$ and every finite cyclic group of order m is isomorphic to the group $(\mathbb{Z}_m,+_m)$.

Theorem 9. Let $G = \langle a \rangle$ and |G| = n. Let $b = a^s \in G$. Let d be the greatest common divisor of n and s, and let $H = \langle b \rangle$. Then |H| = n/d. In particular, b generates all of G if and only if r is relatively prime with n.

Example 15. The following subgroup diagram is obtained from Theorem 9 by direct calculations.



Generating sets

Let (G, \cdot) be a group, and let S be a subset of G.

Theorem 10. Let $\langle S \rangle$ be the set of elements of G consisting of all products $x_1 \dots x_n$ such that x_i or x_i^{-1} is an element of S for each i, and also containing the unit element. It is the smallest subgroup of G containing S.

Definition 10. The elements of S are called the **generators** of $\langle S \rangle$. If $\langle S \rangle = G$, we say that S **generates** G. If there exists a finite set S that generates G, then G is **finitely generated**.

Example 16. $(\mathbb{Z},+)=\langle 1 \rangle$ is a finitely generated group. Its subgroup $\langle r,s \rangle$ is also generated by one element d, which is the greatest common divisor of r and s.

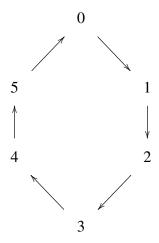
Directed graphs: definition

Definition 11. A **directed graph** (or just digraph) is a finite set of points called **vertices** and some **arcs** (with a direction denoted by an arrowhead or without a direction) joining vertices.

For each generating set S of a *finite* group G, we can construct the following **Cayley digraph** \mathscr{D} . The number of vertices in \mathscr{D} is |G|. For any $a \in S$, there exist arcs of type a. An arc of type a points from $x \in G$ to $y \in G$ if and only if y = xa. If $a \in S$ and $a^2 = e$, it is customary to omit the arrowhead from the arc of type a.

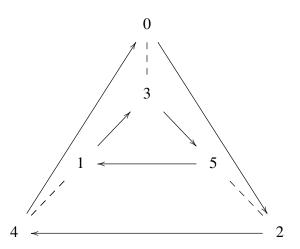
Example: Cayley digraph for $G = \mathbb{Z}_6$ and $S = \{1\}$

Example 17. Let $G = \mathbb{Z}_6$ and $S = \{1\}$. The Cayley digraph has the form



Example: Cayley digraph for $G = \mathbb{Z}_6$ and $S = \{2,3\}$

Example 18. Let $G = \mathbb{Z}_6$ and $S = \{2,3\}$. Let \longrightarrow be an arrow of type 2. Because $3^2 = 0$ in \mathbb{Z}_6 , the arrow of type 3 must be ---. The Cayley digraph has the form

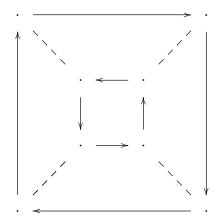


A characterisation of Cayley digraphs

Theorem 11. A digraph \mathscr{G} is a Cayley digraph of some generating set H of a finite group G if and only if the following four properties are satisfied.

- ① *G* is connected.
- ② At most one arc goes from vertex g to a vertex h.
- ③ Each vertex g has exactly one arc of each type starting at g, and one of each type ending at g.
- 4 If two different sequences of arc types starting from vertex g lead to the same vertex h, then those same sequences of arc types starting from any vertex u will lead to the same vertex v.

Cayley used this theorem to construct new groups. For example, the following digraph satisfies all conditions of Theorem 11.



If we label \longrightarrow by a and --- by b, we obtain a Cayley digraph of a new group of order 8:

