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Abstract
Contents of the lecture.
1= Definition of a group
== Subgroups.
1= Cyclic groups.
1= Generating sets and Cayley digraphs.

The definition of a group

Definition 1. A binary structure (G, ) is called a group, if the following axioms are satisfied.
¢, . The binary operation * is associative, i.e., for all a, b, ¢ € G, we have
(axb)xc=ax(bxc).
%, . There exist an identity element ¢ € G such that for all a € G,
exa—=axe—=a.

¢, : For each a € G, there exist an inverse element @’ € G such that

Examples of groups

Example 1. (Z,+), (Q,+), (R,+), and (C, +) are groups with e =0 and d’ = —a.
Example 2. (U,-) is a group with e = 1 and @’ = a~!. Because (U,-) and (Raz,+27) are iso-
morphic binary structures, (Roz,+27) is also a group with e =0 and ' =27 —a.
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Example 3. (U,,-)is agroup withe = 1and @’ =a~'. Because (U,,-) and (Z,,+,) are isomorphic
binary structures, (Z,,+,) is also a group withe =0 and ' =n —a.

Example 4. Let M,,,(Z) be the set of all m x n matrix with integer elements. (M,,xn(Z),+) is
a group. The obviously defined sets My, xn(Zy), Mpyxn(Q), Myxn(R), and My, x,(C) are groups
under matrix addition.

Examples of binary structures that are not groups

Example 5. (Z",+) is not a group, because there is no identity element. This is the reason for
introducing 0.

Example 6. (Z"U{0},+) is not a group, because the element 1 has no inverse. This is the reason
to introduce negative integers. (Z,+) is a group.

Example 7. (Z\ {0},-) is not a group, because the element 2 has no inverse. This is the reason
to introduce rational numbers. Check that (Q \ {0}, ) is a group.

Abelian groups

Definition 2. A group (G, x) is abelian if x is commutative.

Until now, we met only abelian groups.

Example 8. Let GL(n,R) be a subset of M,,(R) consisting of invertible matrices. GL(n,R)
together with matrix multiplication is a non-abelian group. The obviously defined sets GL(n,Q) and
GL(n,C) are non-abelian groups under matrix multiplication.

Elementary theorems about groups

Theorem 1. If xxa = xx b, then a = b (left cancellation law). If axx = bxx, then a = b (right
cancellation law).
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Proof of the left cancellation law.

xxa=xxb Theorem’s condition

X x (xxa) =x * (xxb) Left multiplication by x’
(X xx)xa= (x'xx)*b 4, associativity
exa=exb 4. inverse
a=>b 4, identity.

O

Theorem 2. Let (G,*) be a group and leta, b € G. The linear equations axx =b andyxa = b
have unique solutions x andy in G.

Theorem 3. Let (G,*) be a group. There exist only one identity element e. For any a € G, there
exist only one inverse a'.

Left definition of a group

Definition 3. A binary structure (G, x) is called a group, if the following axioms are satisfied.

¢, . The binary operation x is associative.

@l:  There exist a left identity element e € G such that for all a € G,

exa—d.

@!. Foreachae G, there exist a left inverse element @’ € G such that

W

a'-a:e.

Theorem 4. The system of two-sided axioms (¥%,%,%s) and the system of left axioms
(4,9 l,%’ ) determine the same binary algebraic structures (called groups). Likewise, the obvi-
ously defined system (¢1,%, ,43 ) of right axioms determine the same binary algebraic structures.
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Finite groups and group tables

Let (G, *) be a group and let G be a finite set. The structure of the group G can be completely
described by the group table. For example,

1] !
1 1 -1
—1 —1 1
is the group table of the group (U, ). The table
+2 || 0|1
0 0 1
1 1 0

is the group table of the group (Z,,+-). Itis very easy to see that the groups are indeed isomorphic.

Notation

Along with notation from Lecture 2, algebraists use another notation:

Notation of Lecture 2 Additive notation Multiplicative notation
axb a+b ab
e 0 1
a —a a”!
axax---*xa (ntimes) na a"

Additive notation is used only for abelian groups.

Definition 4. The order |G| of a group G is the cardinality of the set G.

Subgroups

A subgroup H of a group G is a group contained in G so that if 4, /' € H, then the product
hi' in H is the same as the product 44’ in G. The formal definition of subgroup, however, is more
convenient to use.

Definition 5. A subset H of a group G is a subgroup if

® 1c¢H;
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® |Ifa,be H,thenab e H;
® ifacH,thena~ ! € H.

If H is a subgroup of G, we write H < G; if H is a proper subgroup of G, that is, H # G, then
we write H < G. G is the improper subgroup of G. The subgroup {1} is the trivial subgroup of
G. All other subgroups are nontrivial.

Examples of subgroups

Example 9. We have (Z,+) < (Q,+) < (R,+) < (C,+).

Example 10. Let C* = C\ {0}. Then, for any n € Z*, we have (U,,-) < (U,-) < (C*,-).
Example 11. The set of cardinality 4 may carry exactly two different group structures. The first is

(Za,+),
+ o 1] 2]3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2
while the second is the Klein 4-group V (V abbreviates the original German term Vierergruppe):
Lelalb]ec
e e a b c
a a e c b
b b c e a
c c b a e

Z4 has only one nontrivial proper subgroup {0,2}, while V has three nontrivial proper sub-
groups, {e,a}, {e,b}, and {e,c}. This is shown at the following subgroup diagrams.

Ly Vv

| N

{0,2} {e,a} {e,b} {e,c}

| N

{0} {e}
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Cyclic subgroups

Definition 6. If G is a group and a € G, write
(@) ={d":nel}.

(a) is called the cyclic subgroup of G generated by a. A group G is called cyclic if there exists
a € G with G = (a), in which case a is called a generator for G.

Example 12. For any n € Z*, U, is a cyclic group with { = ¢**/" as a generator, i.e., U, = ({).
Because Z, is isomorphic to U,, Z, is also a cyclic group with 1 as a generator, i.e., Z, = (1).
Check that Z4 = (3).

Example 13. V is not cyclic, because (a), (b), and (c) are proper subgroups.

Example 14. (Z,+) = (1). For any n € Z, the cyclic subgroup generated by n, (n), consists of all
multiples of n, and is denoted by nZ. We have nZ = —nZ.

Properties of cyclic groups

Definition 7. Let G be a group, and let a € G. If (a) is finite, then the order of a is the order |{a)|
of this cyclic subgroup. Otherwise, we say that a is of infinite order.

Theorem 5. Every cyclic group is abelian.

Theorem 6 (Division algorithm for Z). Letm € Z" and n € Z. Then there exist unique q € Z (the
quotient) and r € Z (the remainder) such that

n=mq+r and 0<r<m.

Proof. Consider all nonnegative integers of the form n — am, where a € Z. Define r to be the
smallest nonnegative integer of the form n — am, and define g to be the integer a occurring in the
expression r = n — am.

If mg+r =mq' +r', where 0 < ¥ < m, then |(g—¢')m| =|F' —r|. Now O < |r—/| <m
and, if | —¢'| # 0, then |(¢ — ¢')m| > m. We conclude that both sides are 0, that is, ¢ = ¢ and
r=r. -

Theorem 7. A subgroup of a cyclic group is cyclic.
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Corollary 1. The subgroups of (Z,+) are (nZ,+) forn € Z.

Let r € Z* and s € Z*. Let H = (r,s) denotes the smallest subgroup in (Z,+) containing
both r and s. H is a subgroup of (Z,+). One can prove that H = {nr+ms: n,m € Z*}. By
Corollary 1, H has a generator d € 7\ {0}, that can be chosen to be positive.

Definition 8. The positive generator d of the cyclic group H = {nr+ms: n,m € Z* } is called the
greatest common divisor of r and s.

Definition 9. Two positive integers r and s are relatively prime if their greatest common divisor is
1.

Theorem 8 (The structure of cyclic groups). Every infinite cyclic group is isomorphic to the group
(Z,+) and every finite cyclic group of order m is isomorphic to the group (Z,,+m)-

Theorem 9. Let G = (a) and |G| =n. Letb =a* € G. Letd be the greatest common divisor of n
ands, andlet H = (b). Then |H| =n/d. In particular, b generates all of G if and only ifr is relatively
prime with n.

Example 15. The following subgroup diagram is obtained from Theorem 9 by direct calculations.

(1) =Zs

(2) (3)

-
\ _

— 7
\
73 (9) =7,
/
=7

(0)

Generating sets

Let (G,-) be a group, and let S be a subset of G.
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Theorem 10. Let (S) be the set of elements of G consisting of all products x; ...x, such that x; or

x;l is an element of S for each i, and also containing the unit element. It is the smallest subgroup

of G containing S.

Definition 10. The elements of S are called the generators of (S). If (S) = G, we say that S
generates G. If there exists a finite set S that generates G, then G is finitely generated.

Example 16. (Z,+) = (1) is a finitely generated group. Its subgroup (r,s) is also generated by one
element d, which is the greatest common divisor of » and s.

Directed graphs: definition

Definition 11. A directed graph (or just digraph) is a finite set of points called vertices and some
arcs (with a direction denoted by an arrowhead or without a direction) joining vertices.

For each generating set S of a finite group G, we can construct the following Cayley digraph
2. The number of vertices in Z is |G|. For any a € S, there exist arcs of type a. An arc of type
a points fromxe Gtoye Gifandonly if y=xa. Ifa € § and a* = e, it is customary to omit the
arrowhead from the arc of type a.

Example: Cayley digraph for G = Zg and S = {1}

Example 17. Let G = Z¢ and S = {1}. The Cayley digraph has the form
0
5 1

4 2

NS
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Example: Cayley digraph for G = Zg and S = {2,3}

Example 18. Let G =Zg and S = {2,3}. Let — be an arrow of type 2. Because 3% = 0
in Zg, the arrow of type 3 must be - —— . The Cayley digraph has the form

A characterisation of Cayley digraphs

Theorem 11. A digraph ¥ is a Cayley digraph of some generating set H of a finite group G if and
only if the following four properties are satisfied.

¢ is connected.
At most one arc goes from vertex g to a vertex h.

Each vertex g has exactly one arc of each type starting at g, and one of each type ending at g.

® ® O O

If two different sequences of arc types starting from vertex g lead to the same vertex h, then
those same sequences of arc types starting from any vertex u will lead to the same vertex v.

Cayley used this theorem to construct new groups. For example, the following digraph satis-
fies all conditions of Theorem 11.
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N 7/
N /
AN 7/
AN /
/ AN
7/ N
/ AN
/ AN
If we label — by a and -—- by b, we obtain a Cayley digraph of a new
group of order 8:
e a
N 7
AN N 7/
7/
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