OPERA - Operational AI for Process Industry

The project outputs will pave the way for sustainable AI in industrial processes.

Projektansvarig vid MDH

No partial template found

Development of real-time machine learning predictions for complex industrial processes is associated with challenges such as long time-delays and complexity of components and machinery involved. Moreover, industrial processes are continuously evolving through component replacements or expansions. Therefore, machine-learning-based correlations between cause and consequence become intricate.

OPERA is built upon the knowledge and data accrued during the previous PiiA/Vinnova project “Smarta Flöden”. In this way, OPERA capitalizes on available cleaned, streaming process data and working machine learning models in order to provide process industry with address key innovation challenges associated with the fully operational application of AI on a process industrial pilot.

OPERA investigates two distinct industrial processes district heating and cold rolling milling, to capture general process industrial solutions. These cases also include essential value chain aspects, through direct customer participation. Moreover, key technology suppliers are part of the project delivering platforms, competence, and commercialization. The project outputs will pave the way for sustainable AI in industrial processes.


Forskningen har anknytning till följande globala hållbarhetsmål

Infrastruktur och industri. FN:s globala mål 9.

Bygga upp en motståndskraftig infrastruktur, verka för en inkluderande och hållbar industrialisering och främja innovation.

Läs mer

Hållbara städer och samhällen. FN:s globala mål 11.

Städer och bosättningar ska vara inkluderande, säkra, motståndskraftiga och hållbara.

Läs mer
Till toppen