Text

Introduction to Machine Learning

  • Credits 2  credits
  • Education ordinance First cycle
  • Study location Distance with no obligatory meetings
  • Course code DVA133
  • Main area Computer Science

Today, the explosion of data has created new opportunities to apply machine learning (ML). Handling of the large amounts of data created by the very rapid digitization would not be possible without Machine Learning (ML). The purpose of the course "Introduction to Machine Learning" is to give you the foundation for ML. You will get an introduction to the basic areas of ML: data, statistics and probability for ML.

I den här kursen får du en introduktion till de grundläggande områdena inom maskinlärning.

Om kursen

Idag har explosionen av data skapat nya möjligheter att använda maskininlärning (ML). Att behandla de stora datamängder som den mycket snabba digitaliseringen skapar skulle inte vara möjligt utan ML.

Syftet med kursen "Introduktion till maskininlärning" är att ge dig baskunskaper inom ML. Du får en introduktion till de grundläggande områdena inom ML: data, statistik och sannolikhet för ML.


Särskild behörighet

Matematik C (områdesbehörighet 3 med förändring) eller Matematik 3b/3c (områdesbehörighet A3 med förändring).

Om du inte uppfyller de formella behörighetskraven kan du få din behörighet bedömd på kunskap och kompetens som du har fått på annat sätt, såsom arbetslivserfarenhet, övriga studier m.m. Läs mer under Information om anmälan.

Undervisningsspråk

Engelska

Occasions for this course

Autumn semester 2021

  • Autumn semester 2021

    Scope

    2 credits

    Time

    2021-08-30 - 2022-01-16 (part time 10%)

    Education ordinance

    First cycle

    Course type

    Independent course

    Application code

    MDH-24037

    Language

    English

    Study location

    Independent of location

    Teaching form

    Distance learning
    Number of mandatory occasions including examination: 0
    Number of other physical occasions: 0

    Course syllabus & literature

    See course plan and literature list (DVA133)

    Requirements

    Mathematics C or Mathematics 3b/3c

    Selection

    Upper secondary (high school) grades, Swedish Scholastic Aptitude Test, University credits

  • Spring semester 2022

    Scope

    2 credits

    Time

    2022-01-17 - 2022-06-05 (part time 10%)

    Education ordinance

    First cycle

    Course type

    Independent course

    Application code

    MDH-14131

    Language

    English

    Study location

    Independent of location

    Teaching form

    Distance learning
    Number of mandatory occasions including examination: 0
    Number of other physical occasions: 0

    Course syllabus & literature

    See course plan and literature list (DVA133)

    Requirements

    Mathematics C or Mathematics 3b/3c

    Selection

    Upper secondary (high school) grades, Swedish Scholastic Aptitude Test, University credits

Questions about the course?

If you have any questions about the course, please contact the Course Coordinator.

Professor

Shahina Begum

+4621107370

shahina.begum@mdh.se

To top